

DESIGN OF RF MIXER IN 2.4 GHZ ISM

BAND FOR ZIGBEE

SUCHITAV KHADANGA

RFIC TECHNOLOGIES, BANGALORE, INDIA

http://www.rficdesign.com

Outline

- Introduction
- Background Study
- Specification
- Active vs Passive Mixers
- Literature Survey
- Design

Introduction Mixer-Creative use of Non Lineari^A

Introduction(contd..) Zigbee

Parameter	2.4 GHz PHY	868/915 MHz PHY	
Sensitivity @ 1% PER	-85 dBm	-92 dBm	
Receiver Maximum Input Level	-20 c	IBm	
Adjacent Channel Rejection	0 c	IB	
Alternate Channel Rejection	30	dB	
Output Power (Lowest Maximum)	-3 dBm		
Transmit Modulation Accuracy	EVM<35% for 1000 chips		
Number of Channels	16	1/10	
Channel Spacing	5 MHz	single-channel/2 MHz	
Transmission Rates			
Data Rate Symbol Rate Chin Rate	250 kb/s 62.5 ksymbol/s	20/40 kb/s 20/40 ksymbol/s 200/600 kabin/s	
	2 Withp/s	500/600 KChip/S	
Chip Modulation	O-QPSK with half-sine pulse shaping (MSK)	BPSK with raised cosine pulse shaping	
RX-TX and TX-RX turnaround time	e 12 Symbols		

Fig: IEEE 802.15.4 PHY parameters

Fig: IEEE 802.15.4 and ZigBee working model

 $Sensitivity = -174 \text{ dBm/Hz} + 10 \cdot \log(BW) + NF + SNR_{OUT}$

Introduction(contd..) Zigbee

Each O to 15 value ->one of 32 chip value as per Table

Fig: 2450 PHY layer

Background Study

Heterodyne Receivers

Heterodyne Receivers

(a)

Fig: Trade Off btw channel selection and image rejection

Homodyne Receivers

Advantages:

- Zero IF
- No image problems
- High level of integration
- Low Flicker noise

Drawbacks:

- DC Offsets
- Self Mixing
- I & Q mismatch

Non Linearity

Effects of Non Linearity:

- Harmonic Distortion
- Gain Compression
- Desensitization
- Intermodulation(2nd order and 3rd order)

$$Y(t)=a1x(t)$$

$$y(t) = \alpha_0 + \alpha_1 x(t) + \alpha_2 x^2(t) + \alpha_3 x^3(t) + \cdots,$$

$$y(t) \approx \alpha_1 x(t) + \alpha_2 x^2(t) + \alpha_3 x^3(t).$$

Effects of Non Linearity: Intermodulation

 $y(t) = \alpha_1 (A_1 \cos \omega_1 t + A_2 \cos \omega_2 t) + \alpha_2 (A_1 \cos \omega_1 t + A_2 \cos \omega_2 t)^2$ $+ \alpha_3 (A_1 \cos \omega_1 t + A_2 \cos \omega_2 t)^3$. $\omega = 2\omega_1 \pm \omega_2 : \frac{3\alpha_3 A_1^2 A_2}{4} \cos(2\omega_1 + \omega_2)t + \frac{3\alpha_3 A_1^2 A_2}{4} \cos(2\omega_1 - \omega_2)t$ $\omega = 2\omega_2 \pm \omega_1 : \frac{3\alpha_3 A_1 A_2^2}{4} \cos(2\omega_2 + \omega_1)t + \frac{3\alpha_3 A_1 A_2^2}{4} \cos(2\omega_2 - \omega_1)t$ $\begin{array}{c|c} & & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ &$ Output ω₁ ω₂ ω Amplitude 20log(α1A) A_{OIP3} - 20log($\frac{3}{4}\alpha_3 A^3$) AIIP3 (log scale) $\frac{4}{2} \left| \frac{\alpha_1}{\alpha_1} \right|.$ $A_{IIP3} = 1$ ω_{2} ω_{2} ωı

Effects of Non Linearity: Second Order Distortion

$$Y(t)=a1x(t)+a1x(t)^{2}$$

$$V_{out}(t) = \alpha_{1}V_{in}(t) + \alpha_{2}V_{in}^{2}(t)$$

$$= \alpha_{1}A(\cos \omega_{1}t + \cos \omega_{2}t) + \alpha_{2}A^{2}\cos(\omega_{1} + \omega_{2})t$$

$$+ \alpha_{2}A^{2}\cos(\omega_{1} - \omega_{2})t + \cdots,$$

Specifications

The project focuses on designing the RF mixer in 180nm technology which incorporates necessary RF functionality needed for IEEE 802.15.4/ZigBee RF, wireless sensor network, and any other wireless systems in the 2.4GHz ISM band which is a worldwide standard for ZigBee wireless communication. Following are some of the desired specifications:

Mixer Technical Parameters (VDD=1.8V, T=25°C)

Parameters	Units		Minimum	Typical	Maximum
LO frequency	GHz	Nominal	Operating Cond	itions	2.5
IF	MHz		1		2
Noise Figure	dB			5	
Parameters	dp	Units	Minimum	Typical	Maximum
BGill DD voltage	ub	V		1.8	
Frontroerelitege 11 digh"	dBm	V		158	VDD
Ronation and are	dB	V		вo	0.3
Isolation LO-IF	dB	_		60	
Operating Ambie Isolation IF-RF Temperature	ent dB	°C	-30	60	-85
Input/Output	Ω			50	
Impedence					

Mixers: Performance Parameters

- Conversion Gain(Rms voltage of IF/Rms Voltage of RF)(10dB)
- Noise Figure(SSB and DSB)(12dB)
- Port Isolation(10-20 dB)
- P-1bd point(Compression point)

Mixers: Passive Mixers

Fig: Single balanced

Flg: Double balanced

$$r_{ds} = \frac{L}{\mu_n C_{ox} W[(V_{gs} - V_{th}) - V_{ds}]},$$

Active(Basic Gilberts Cell)

(a)

(c)

Active vs Passive

- No DC bias
- Better Linearity
- Low flicker
- Low power consumption
- Simplicity

Passive Mixer Important Specs

- Conversion Gain
- DSB NF
- Port Isolations
- Flicker noise corner frequency
- IIP3
- A1dB

Integrated 130 nm CMOS Passive Mixer for 5 GHz WLAN Applications

- 2005
- Dissipates no DC power
- Layout helps in Port to port isolation? How?
- Gain can be easily compensated with the help of an IF amplifier
- Also Called FET resistive mixers(Pg 547)
- Microwave mixer design by Stephen a Maas ?
- Agilent ADS used and virtuoso layout tool by cadence
- RF power level set to 40dBm
- How to measure conversion losses ?
- Conversion loss can be lowered if higher LO drive voltages are spent
- Careful extraction of smallest parasitic capacitances which lead to electrical layout imbalances is important

Fig. 2. Conversion loss versus RF frequency, available LO power = 0 dBm, gate bias voltage = 0.3 V, IF frequency = 2.5 GHz.

Fig. 6. Input third order intercept point vs. RF frequency.

Fig. 3. Conversion loss versus available LO power, gate bias voltage = 0.3 V, IF frequency = 2.5 GHz, RF frequency = 5.5 GHz, LO frequency = 3 GHz.

Fig. 4. Conversion loss versus gate bias voltage. available LO power = 0 dBm, IF frequency = 2.5 GHz, RF frequency = 5.5 GHz, LO frequency = 3 GHz.

Fig. 7. Input third order intercept point vs. avail. LO | fi

20

Input TOI [dBm]

Fig. 9. Measured LO-RF and LO-IF port isolation vs. LO frequency.

Gate Bias Voltage	0.3 V
RF power level	-40dBm
Return loss at RF and IF	>15dB
Conversion loss	7dB
Noise Figure(SSB)	<8dB
Flicker Noise Corner F	8 Khz
IIP3	>10dBm
LO-IF, LO-RF	>45dB
IF	2.4Ghz

Wide-band 0.25µm CMOS Passive

- 2009
- A small bias at LO will help achieve better conversion loss
- Wideband, high linearity and impedance matching essential
- In this paper RF and LO impedance have been changed to optimize
- Size of NMOS chosen to match best cl, rf and If imp matching
- Larger device will contribute to lower cl, but larger input and output parasitic cap will degrade BW and imp matching
- Thus gate width of 180um adopted
- With mos design size if imp matching was achieved. How ?
- Parasitic like substrate series resistance also taken into consideration
- Agilent tool used
- Not understanding the Resistance equation and the role of LO. Paragraph highlighted in paper.
- Implemented in multifingered gate array to reduce gate resistance
- Two tone test with 2Khz difference was employed.

RF Return	<10dB	<u>۵</u>
		L ^U
LOSS		Technology CMC
		130
IF Return	Better than	Topology Dou
	Detter than	Balan
loss	-8dB	RF Frequency 5 -
	045	(GHz)
		IF Frequency 250
		(MHz)
		Gate Bias 0.3
P1db	4dBm	(V)
		Lowest CL* 6
		(QB)
		IP10B -
IIP3	11.4dBm	(dbill) IIP3 10
		(dBm)
		Min LO-IF -44
		Isolation (dB)
LO-RF	-51dB	Min. LO-RF -4
		Isolation (dB)
		Min. RF -1
		Return Loss (dB)
LO-IF	-360B	Max. RF -
		Return Loss (dB)
		Min. IF -1
		Return Loss (dB) @ 2.5
	b.40B	Pwr Dissipation 0
		(mW)

	COMPA	KISON OF PUBLISH	IED CMOS WIDE-E	SAND RESISTIVE N	IIXERS	
	[9]	[10]	[11]	[12]	[13]	This Work
Technology	CMOS	CMOS	CMOS	CMOS	CMOS	CMOS
0,	130 nm	130 nm	0.18 µm	90 nm	65 nm	0.25 µm
Topology	Double	Double	Double	Single	Singly	Double
	Balanced	Balanced	Balanced	Ended	Balanced	Balanced
RF Frequency	<u>5-6</u>	2 - 3	1 - 11	57 - 63	54 - 64	2 - 9
(GHz)	1 1	!		1		
IF Frequency	2500	~ 0	500	2000	2000	0.1
(MHz)	1 1	!		1		
Gate Bias	0.3	0.33	-	0.45	0.5	0.45
(V)		!	!	'	!	
Lowest CL*	6	5.6	6.5	11.6	12.5	6.4
(dB)	<u> </u>	!				
IP1dB	- !	0	4 - 6**	6	5	4 - 6.5
(dBm)		@ 2.5 GHz		@ 62 GHz	@ 60 GHz	
IIP3	10 - 14	10	9 – 13**	16.5	- /	11.4 - 14.3
(dBm)	<u> </u>	@ 2.5 GHz	!	@ 62 GHz	!	
Min. LO-IF	-44	-52	-	- '	- !	-36
Isolation (dB)	<u> </u>	<u> </u>		ļ	!	
Min. LO-RF	-45	-48	-36	- '		-51
Isolation (dB)		!				
Min. RF	-15	- !	-4	- '	- !	-8.6
etum Loss (dB)	<u> </u>	<u> </u> !	<u> </u>		!	
Max. RF	- !	- !	-32	-	- /	-18
etum Loss (dB)		<u> </u>		ļ!	!	
Min. IF	-15	-	- !	- '	- /	-8
eturn Loss (dB)	@ 2.5 GHz	!			!	@ 135 MHz
Wr Dissipation	0	0	3	0	0	0
(mW)	1 1		/	1	/	

* Lowest conversion loss (CL) versus RF frequency.

** IP1dB and IIP3 were measured between 1 and 12 GHz.

Not specified.

1-11 GHz Ultra-Wideband Resistive Ring Mixer in 0.18-μm CMOS Technology

- Fet act like variable resistor when biased in linear region with channel resistance modulated by LO signal
- W/L= 20um/0.18um the turn on R=10ohm
- Increasing device size would decrease the BW of the ckt, decreasing device size would be detrimental to conversion loss. By device size they mean w/l or only l?
- This tradeoff helps decide transistor size.
- 1.4nH, 90fF, 250 ohm for input matching used(RF)
- LO not matched because to reduce chip area but more LO power reqd to save conversion loss
- Shunt capacitors help improve isolation
- DC blocker cap to output in series

2.4 GHz 0.18µm CMOS Passive Mixer with Integrated Baluns

- Microwave Symposium Digest, 2009. MTT '09. IEEE MTT-S International
- With Balun Integrated
- No passive components required for matching lo and rf
- The size of the NMOS device is chosen for the best CL, RF impedance matching, and IF matching?
- Agilent ADS tool for simulation?
- LO power level set at 10dBm, RF power level set at -40dBm? Wat r the general numbers ?
- Input return loss was measured using Agilent 8510C vector network analyzer
- A high return coefficient at LO port is seen in graph . Which leads to high vgs ? Why should LO port be nearly open ?

$$R \approx \frac{L}{W * I_t * n} \left[n * V_{ds} - V_{gs} + V_T \right]$$

SUMMARIZED PERFORMANCES OF THIS MIXER AND ITS COMPARISON WITH PREVIOUSLY PUBLISHED DATA

	I							7
	This	s work	[6]	[7]	[8]	[9]	[10]	
	Mixer Core	Mixer + Balun						and the second second
Technology	BiCMOS	BiCMOS	BiCMOS	CMOS	CMOS	CMOS	CMOS	TECHNOLOGE
	0.18µm	0.18µm	0.25µm	130nm	130nm	0.25µm	0.18µm	The strength of the
Topology	Double	Double	Double	Double	Double	Double	Double	
	balanced	balanced	balanced	balanced	balanced	balanced	balanced	
Matching Circuit	No	No	RF and LO	No	No	RF and LO	RF and IF	
On-Chip	No	Yes	No	No	No	No	No	
Balun								
RF*	2-6	1.8 – 2.6	1.8	2-3	5 – 6	2 – 9	1 – 11	
Frequency (GHz)								
IF Frequency (MHz)	10	10	170	~0	2500	0.1	500	1
LO Power (dBm)	10	10	14	0	0	10	9	
Gate bias (V)	0	0	0	0.33	0.3	0.45	—	
CL	6.8	7.8	5.8	5.6	6	6.4	6.5 ^{°°}	
(dB)	@ 2.4 GHz	@ 2.4 GHz						
IP1dB	7	6	10	0	_	4 - 6.5	4 - 6***	
(dBm)	@ 2.4 GHz	@ 2.4 GHz		@ 2.5 GHz				
IIP3	14	13.4	19.5	10	10 – 14	11.4 – 14.3	9 – 13***	
(dBm)	@ 2.4 GHz	@ 2.4 GHz		@ 2.5 GHz				
LO-RF	-58	-52.7	_	-48	-45	-51	-36	
Isolation (dB)	@ 2.4 GHz	@ 2.4 GHz						
LO-IF	-20	-30	43	-52	-44	-36	_	
Isolation	@ 2.4 GHz	@ 2.4 GHz						
(dB)								
RF	-6 – -8	-19.3 – -10.3	_	_	< -15	-18 – -8.6	-32 – -4	
Return Loss	@ 2 - 6	@ 2 - 6						
(dB)	GHz	GHz						
IF	< -6.9	< -8	_	_	_	< -8	_	
Return Loss	@ DC - 1	@ DC - 150				@ DC - 135		
(dB)	GHz	MHz				MHz		
Power	0	0	0	0	0	0	3	1
Consumption								
(mW)								

* Estimated 3dB bandwidth based on the data in Fig.5. ** Lowest conversion loss (CL) versus RF frequency. *** IP1dB and IIP3 were measured between 1 and 12 GHz.

- Not specified.

A Resistively Degenerated Wide-Band Passive Mixer with LowNoise Figure and +60dBm IIP2 in 0.18µm CMOS

- Source degen method to improve NF and linearity
- Uses Transimpedence Amp to provide a low impedence node at mixer output. Why ?

IIP3	9dBm
NF(DSB)	8dB
Gain	24dB

(a) Conventional Passive Mixer

(b) Equivalent Circuit

(d) Equivalent Circuit

Design: Modelling, Simulation and Implementation of a Passive Mixer in 130nm CMOS Technology and Scaling Issues for Future Technologies

• Figure of Merit for Mixer (Characterized by 1dB compression point, SSB, NF):

 $FOM_{MXER} (dBm/Hz) = G_c - SSBNF + P_{1-dB} - P_{CONSUMED}$ (1) $P_{CONSUMED} = V_{DD}I_{DC} + P_{LO}$

- Adobe Acrobat
- The conversion gain of a double balanced passive mixer is as follows:

- Channel length, mobility, and oxide capacitance affect the on resistance.
- Transmission gates and bootstrapping techniques can be used to improve linearity of passive mixer
- P1db point:

$$\begin{split} v_{IF} &= g_{C} \cdot v_{RF} \qquad v_{IF} = c_{0} + c_{1}v_{RF} + c_{2}v_{RF}^{2} + c_{3}v_{RF}^{3} + \cdots \\ &|c_{1}/c_{3}| = \frac{Z_{L} \left(Z_{OFF} - \frac{L_{g}}{\mu_{n}C_{OX}W(V_{g} - V_{th} - V_{ds})} \right) \left(Z_{L} + \frac{L_{g}}{\mu_{n}C_{OX}W(V_{g} - V_{th} - V_{ds})} \right)^{2}}{-\frac{L_{g}}{\mu_{n}C_{OX}W(V_{g} - V_{th} - V_{ds})} \cdot \left(Z_{L} \cdot \frac{1}{(V_{g} - V_{th} - V_{ds})} \right)^{2} (Z_{L} + Z_{OFF})} \qquad P_{1-dB} = 10 \log_{10} \left(\frac{1000 \cdot \left(\sqrt{0.145 |c_{1}/c_{3}|} / \sqrt{2} \right)^{2}}{4 \cdot Z_{S}} \right) dBm_{1-dB} = 10 \log_{10} \left(\frac{1000 \cdot \left(\sqrt{0.145 |c_{1}/c_{3}|} / \sqrt{2} \right)^{2}}{4 \cdot Z_{S}} \right) dBm_{1-dB} = 10 \log_{10} \left(\frac{1000 \cdot \left(\sqrt{0.145 |c_{1}/c_{3}|} / \sqrt{2} \right)^{2}}{4 \cdot Z_{S}} \right) dBm_{1-dB} = 10 \log_{10} \left(\frac{1000 \cdot \left(\sqrt{0.145 |c_{1}/c_{3}|} / \sqrt{2} \right)^{2}}{4 \cdot Z_{S}} \right) dBm_{1-dB} = 10 \log_{10} \left(\frac{1000 \cdot \left(\sqrt{0.145 |c_{1}/c_{3}|} / \sqrt{2} \right)^{2}}{4 \cdot Z_{S}} \right) dBm_{1-dB} = 10 \log_{10} \left(\frac{1000 \cdot \left(\sqrt{0.145 |c_{1}/c_{3}|} / \sqrt{2} \right)^{2}}{4 \cdot Z_{S}} \right) dBm_{1-dB} = 10 \log_{10} \left(\frac{1000 \cdot \left(\sqrt{0.145 |c_{1}/c_{3}|} / \sqrt{2} \right)^{2}}{4 \cdot Z_{S}} \right) dBm_{1-dB} = 10 \log_{10} \left(\frac{1000 \cdot \left(\sqrt{0.145 |c_{1}/c_{3}|} / \sqrt{2} \right)^{2}}{4 \cdot Z_{S}} \right) dBm_{1-dB} = 10 \log_{10} \left(\frac{1000 \cdot \left(\sqrt{0.145 |c_{1}/c_{3}|} / \sqrt{2} \right)^{2}}{4 \cdot Z_{S}} \right) dBm_{1-dB} = 10 \log_{10} \left(\frac{1000 \cdot \left(\sqrt{0.145 |c_{1}/c_{3}|} / \sqrt{2} \right)^{2}}{4 \cdot Z_{S}} \right) dBm_{1-dB} = 10 \log_{10} \left(\frac{1000 \cdot \left(\sqrt{0.145 |c_{1}/c_{3}|} / \sqrt{2} \right)^{2}}{4 \cdot Z_{S}} \right) dBm_{1-dB} = 10 \log_{10} \left(\frac{1000 \cdot \left(\sqrt{0.145 |c_{1}/c_{3}|} / \sqrt{2} \right)^{2}}{4 \cdot Z_{S}} \right) dBm_{1-dB} = 10 \log_{10} \left(\frac{1000 \cdot \left(\sqrt{0.145 |c_{1}/c_{3}|} / \sqrt{2} \right)^{2}}{4 \cdot Z_{S}} \right) dBm_{1-dB} = 10 \log_{10} \left(\frac{1000 \cdot \left(\sqrt{0.145 |c_{1}/c_{3}|} / \sqrt{2} \right)^{2}}{4 \cdot Z_{S}} \right) dBm_{1-dB} = 10 \log_{10} \left(\frac{1000 \cdot \left(\sqrt{0.145 |c_{1}/c_{3}|} / \sqrt{2} \right)^{2}}{4 \cdot Z_{S}} \right) dBm_{1-dB} = 10 \log_{10} \left(\frac{1000 \cdot \left(\sqrt{0.145 |c_{1}/c_{3}|} / \sqrt{2} \right)^{2}}{4 \cdot Z_{S}} \right) dBm_{1-dB} = 10 \log_{10} \left(\frac{1000 \cdot \left(\sqrt{0.145 |c_{1}/c_{3}|} / \sqrt{2} \right)^{2}}{4 \cdot Z_{S}} \right) dBm_{1-dB} = 10 \log_{10} \left(\frac{1000 \cdot \left(\sqrt{0.145 |c_{1}/c_{3}|} / \sqrt{2} \right)^{2}}{4 \cdot Z_{S}} \right) dBm_{1-dB} = 10 \log_{10} \left(\frac{1000 \cdot \left(\sqrt{0.145 |c$$

 As cmos tech scales down the NF improves due to ft of the device.

$$F = \frac{1}{g_{C}^{2}} + \frac{F_{MIX}}{g_{C}^{2} \cdot kT_{0}R_{S}} = \frac{1}{g_{C}^{2}} + \frac{8kT_{0}/g_{ds}}{g_{C}^{2} \cdot kT_{0}R_{S}}$$
$$\implies SSB NF = 10\log_{10}\left(\frac{1}{g_{C}^{2}} + \frac{2}{g_{C}^{2} \cdot g_{ds} \cdot R_{S}}\right)$$

LO power	7dBm
CG	-5.2dB
1dB compressio n point	0.4dB
SSB NF	9.2dB
Impedence	50ohm

RF mixers using standard digital CMOS 0.35ym process

- Active and Passive comparison
- What are multifinger transistor structures?

$$r_{ds} = \frac{L}{\mu_n C_{ox} W[(V_{gs} - V_{th}) - V_{ds}]},$$

 Ron can be minimum by using low L and higher W, but cgd and cgs increase.

Fig. 6. The passive mixer schematic.

Fig. 2. The active mixer schematic.

IADLEI				
SUMMARY	OF BOTH M	IXER PERF	ORMANCES	

[Passive	Active
	Mixer	Mixer
Supply voltage (V)	-	3
DC Power consumption (mW)	0	29
RF-to-IF conversion gain (dB)	-7.5	10.4
SSB noise figure (dB)	10	7.2
P _{.idb} (dBm)	+1	-19
Input IP3 (dBm)	+16	-6
LO power level (dBm)	+7	-2
LO frequency (GHz)	1.65	1.65
RF frequency (GHz)	1.8	1.8
LO-to-RF isolation (dB)	32	42
LO-to-IF isolation (dB)	27	28
RF-to-IF isolation (dB)	23	33

Valuable suggestions

