RFIC Technologies

Silicon Controlled Rectifier


Shockley diodes are curious devices, but rather limited in application. Their usefulness may be expanded, however, by equipping them with another means of latching. In doing so, they become true amplifying devices (if only in an on/off mode), and we refer to them as silicon-controlled rectifiers, or SCRs.

The progression from Shockley diode to SCR is achieved with one small addition, actually nothing more than a third wire connection to the existing PNPN structure:

If an SCR’s gate is left floating (disconnected), it behaves exactly as a Shockley diode. It may be latched by breakover voltage or by exceeding the critical rate of voltage rise between anode and cathode, just as with the Shockley diode. Dropout is accomplished by reducing current until one or both internal transistors fall into cutoff mode, also like the Shockley diode. However, because the gate terminal connects directly to the base of the lower transistor, it may be used as an alternative means to latch the SCR. By applying a small voltage between gate and cathode, the lower transistor will be forced on by the resulting base current, which will cause the upper transistor to conduct, which then supplies the lower transistor’s base with current so that it no longer needs to be activated by a gate voltage. The necessary gate current to initiate latch-up, of course, will be much lower than the current through the SCR from cathode to anode, so the SCR does achieve a measure of amplification.

This method of securing SCR conduction is called triggering, and it is by far the most common way that SCRs are latched in actual practice. In fact, SCRs are usually chosen so that their breakover voltage is far beyond the greatest voltage expected to be experienced from the power source, so that it can be turned on only by an intentional voltage pulse applied to the gate.

It should be mentioned that SCRs may sometimes be turned off by directly shorting their gate and cathode terminals together, or by “reverse-triggering” the gate with a negative voltage (in reference to the cathode), so that the lower transistor is forced into cutoff. I say this is “sometimes” possible because it involves shunting all of the upper transistor’s collector current past the lower transistor’s base. This current may be substantial, making triggered shut-off of an SCR difficult at best. A variation of the SCR, called a Gate-Turn-Off thyristor, or GTO, makes this task easier. But even with a GTO, the gate current required to turn it off may be as much as 20% of the anode (load) current! The schematic symbol for a GTO is shown in the following illustration:

SCRs and GTOs share the same equivalent schematics (two transistors connected in a positive-feedback fashion), the only differences being details of construction designed to grant the NPN transistor a greater β than the PNP. This allows a smaller gate current (forward or reverse) to exert a greater degree of control over conduction from cathode to anode, with the PNP transistor’s latched state being more dependent upon the NPN’s than vice versa. The Gate-Turn-Off thyristor is also known by the name of Gate-Controlled Switch, or GCS.

A rudimntary test of SCR function, or at least terminal identification, may be performed with an ohmmeter. Because the internal connection between gate and cathode is a single PN junction, a meter should indicate continuity between these terminals with the red test lead on the gate and the black test lead on the cathode like this:

All other continuity measurements performed on an SCR will show “open” (“OL” on some digital multimeter displays). It must be understood that this test is very crude and does not constitute a comprehensive assessment of the SCR. It is possible for an SCR to give good ohmmeter indications and still be defective. Ultimately, the only way to test an SCR is to subject it to a load current.

If you are using a multimeter with a “diode check” function, the gate-to-cathode junction voltage indication you get may or may not correspond to what’s expected of a silicon PN junction (approximately 0.7 volts). In some cases, you will read a much lower junction voltage: mere hundredths of a volt. This is due to an internal resistor connected between the gate and cathode incorporated within some SCRs. This resistor is added to make the SCR less susceptible to false triggering by spurious voltage spikes, from circuit “noise” or from static electric discharge. In other words, having a resistor connected across the gate-cathode junction requires that a strong triggering signal (substantial current) be applied to latch the SCR. This feature is often found in larger SCRs, not on small SCRs. Bear in mind that an SCR with an internal resistor connected between gate and cathode will indicate continuity in both directions between those two terminals:

“Normal” SCRs, lacking this internal resistor, are sometimes referred to as sensitive gate SCRs due to their ability to be triggered by the slightest positive gate signal.

The test circuit for an SCR is both practical as a diagnostic tool for checking suspected SCRs and also an excellent aid to understanding basic SCR operation. A DC voltage source is used for powering the circuit, and two pushbutton switches are used to latch and unlatch the SCR, respectively:

Actuating the normally-open “on” pushbutton switch connects the gate to the anode, allowing current from the negative terminal of the battery, through the cathode-gate PN junction, through the switch, through the load resistor, and back to the battery. This gate current should force the SCR to latch on, allowing current to go directly from cathode to anode without further triggering through the gate. When the “on” pushbutton is released, the load should remain energized.

Pushing the normally-closed “off” pushbutton switch breaks the circuit, forcing current through the SCR to halt, thus forcing it to turn off (low-current dropout).

If the SCR fails to latch, the problem may be with the load and not the SCR. There is a certain minimum amount of load current required to hold the SCR latched in the “on” state. This minimum current level is called the holding current. A load with too great a resistance value may not draw enough current to keep an SCR latched when gate current ceases, thus giving the false impression of a bad (unlatchable) SCR in the test circuit. Holding current values for different SCRs should be available from the manufacturers. Typical holding current values range from 1 milliamp to 50 milliamps or more for larger units.

For the test to be fully comprehensive, more than the triggering action needs to be tested. The forward breakover voltage limit of the SCR could be tested by increasing the DC voltage supply (with no pushbuttons actuated) until the SCR latches all on its own. Beware that a breakover test may require very high voltage: many power SCRs have breakover voltage ratings of 600 volts or more! Also, if a pulse voltage generator is available, the critical rate of voltge rise for the SCR could be tested in the same way: subject it to pulsing supply voltages of different V/time rates with no pushbutton switches actuated and see when it latches.

In this simple form, the SCR test circuit could suffice as a start/stop control circuit for a DC motor, lamp, or other practical load:

Another practical use for the SCR in a DC circuit is as a crowbar device for overvoltage protection. A “crowbar” circuit consists of an SCR placed in parallel with the output of a DC power supply, for the purpose of placing a direct short-circuit on the output of that supply to prevent excessive voltage from reaching the load. Damage to the SCR and power supply is prevented by the judicious placement of a fuse or substantial series resistance ahead of the SCR to limit short-circuit current:

Some device or circuit sensing the output voltage will be connected to the gate of the SCR, so that when an overvoltage condition occurs, voltage will be applied between the gate and cathode, triggering the SCR and forcing the fuse to blow. The effect will be approximately the same as dropping a solid steel crowbar directly across the output terminals of the power supply, hence the name of the circuit.

Most applications of the SCR are for AC power control, despite the fact that SCRs are inherently DC (unidirectional) devices. If bidirectional circuit current is required, multiple SCRs may be used, with one or more facing each direction to handle current through both half-cycles of the AC wave. The primary reason SCRs are used at all for AC power control applications is the unique response of a thyristor to an alternating current. As we saw in the case of the thyratron tube (the electron tube version of the SCR) and the DIAC, a hysteretic device triggered on during a portion of an AC half-cycle will latch and remain on throughout the remainder of the half-cycle until the AC current decreases to zero, as it must to begin the next half-cycle. Just prior to the zero-crossover point of the current waveform, the thyristor will turn off due to insufficient current (this behavior is also known as natural commutation) and must be fired again during the next cycle. The result is a circuit current equivalent to a “chopped up” sine wave. For review, here is the graph of a DIAC’s response to an AC voltage whose peak exceeds the breakover voltage of the DIAC:

With the DIAC, that breakover voltage limit was a fixed quantity. With the SCR, we have control over exactly when the device becomes latched by triggering the gate at any point in time along the waveform. By connecting a suitable control circuit to the gate of an SCR, we can “chop” the sine wave at any point to allow for time-proportioned power control to a load.

Take the following circuit as an example. Here, an SCR is positioned in a circuit to control power to a load from an AC source:

Being a unidirectional (one-way) device, at most we can only deliver half-wave power to the load, in the half-cycle of AC where the supply voltage polarity is positive on the top and negative on the bottom. However, for demonstrating the basic concept of time-proportional control, this simple circuit is better than one controlling full-wave power (which would require two SCRs).

With no triggering to the gate, and the AC source voltage well below the SCR’s breakover voltage rating, the SCR will never turn on. Connecting the SCR gate to the anode through a normal rectifying diode (to prevent reverse current through the gate in the event of the SCR containing a built-in gate-cathode resistor), will allow the SCR to be triggered almost immediately at the beginning of every positive half-cycle:

We can delay the triggering of the SCR, however, by inserting some resistance into the gate circuit, thus increasing the aount of voltage drop required before there is enough gate current to trigger the SCR. In other words, if we make it harder for electrons to flow through the gate by adding a resistance, the AC voltage will have to reach a higher point in its cycle before there will be enough gate current to turn the SCR on. The result looks like this:

With the half-sine wave chopped up to a greater degree by delayed triggering of the SCR, the load receives less average power (power is delivered for less time throughout a cycle). By making the series gate resistor variable, we can make adjustments to the time-proportioned power:

Unfortunately, this control scheme has a significant limitation. In using the AC source waveform for our SCR triggering signal, we limit control to the first half of the waveform’s half-cycle. In other words, there is no way for us to wait until after the wave’s peak to trigger the SCR. This means we can turn down the power only to the point where the SCR turns on at the very peak of the wave:

Raising the trigger threshold any more will cause the circuit to not trigger at all, since not even the peak of the AC power voltage will be enough to trigger the SCR. The result will be no power to the load.

An ingenious solution to this control dilemma is found in the addition of a phase-shifting capacitor to the circuit:

The smaller waveform shown on the graph is voltage across the capacitor. For the sake of illustrating the phase shift, I’m assuming a condition of maximum control resistance where the SCR is not triggering at all and there is no load current, save for what little current goes through the control resistor and capacitor. This capacitor voltage will be phase-shifted anywhere from 0o to 90o lagging behind the power source AC waveform. When this phase-shifted voltage reaches a high enough level, the SCR will trigger.

Assuming there is periodically enough voltage across the capacitor to trigger the SCR, the resulting load current waveform will look something like this:

Because the capacitor waveform is still rising after the main AC power waveform has reached its peak, it becomes possible to trigger the SCR at a threshold level beyond that peak, thus chopping the load current wave further than it was possible with the simpler circuit. In reality, the capacitor voltage waveform is a bit more complex that what is shown here, its sinusoidal shape distorted every time the SCR latches on. However, what I’m trying to illustrate here is the delayed triggering action gained with the phase-shifting RC network, and so a simplified, undistorted waveform serves the purpose well.

SCRs may also be triggered, or “fired,” by more complex circuits. While the circuit previously shown is sufficient for a simple application like a lamp control, large industrial motor controls often rely on more sophisticated triggering methods. Sometimes, pulse transformers are used to couple a triggering circuit to the gate and cathode of an SCR to provide electrical isolation between the triggering and power circuits:

When multiple SCRs are used to control power, their cathodes are often not electrically common, making it difficult to connect a single triggering circuit to all SCRs equally. An example of this is the controlled bridge rectifier shown here:

In any bridge rectifier circuit, the rectifying diodes (or in this case, the rectifying SCRs) must conduct in opposite pairs. SCR1 and SCR3 must be fired simultaneously, and likewise SCR2 and SCR4 must be fired together as a pair. As you will notice, though, these pairs of SCRs do not share the same cathode connections, meaning that it wouldnot work to simply parallel their respective gate connections and connect a single voltage source to trigger both:

Although the triggering voltage source shown will trigger SCR4, it will not trigger SCR2 properly because the two thyristors do not share a common cathode connection to reference that triggering voltage. Pulse transformers connecting the two thyristor gates to a common triggering voltage source will work, however:

Bear in mind that this circuit only shows the gate connections for two out of the four SCRs. Pulse transformers and triggering sources for SCR1 and SCR3, as well as the details of the pulse sources themselves, have been omitted for the sake of simplicity.

Controlled bridge rectifiers are not limited to single-phase designs. In most industrial control systems, AC power is available in three-phase form for maximum efficiency, and solid-state control circuits are built to take advantage of that. A three-phase controlled rectifier circuit built with SCRs, without pulse transformers or triggering circuitry shown, would look like this:


Reference free engineering research papers
Related

COMMENT electronics

 

  1. Guru says:

    Silicon Controlled Rectifiers (SCR)

    Silicon controlled rectifiers (SCR) are four-layer (PNPN) thyristors with three terminals: an input control terminal (gate), an output terminal (anode), and a terminal common to both the input and output (cathode). SCRs are used mainly with high voltages and currents, often to control alternating current (AC) where the change of sign causes the device to switch off automatically. For example, SCRs are used in dimmer switches where the turn-on point occurs at a specific point on the sine curve of the AC supply. The device then remains on for the remainder of that cycle. In devices where the gate is left-floating or disconnected, silicon controlled rectifiers behave like Shockley diodes. Latching is achieved by reaching a breakover voltage or exceeding the critical rate of voltage rise between the anode and cathode. Dropout is achieved by reducing the current until one or both internal transistors fall into cutoff mode. Although SCRs offer faster switching speeds than diodes, both types of devices can conduct in only one direction.

    Selecting silicon controlled rectifiers (SCRs) requires an analysis of performance specifications. Peak repetitive reverse voltage is the maximum reverse voltage that may be applied continuously to the anode and cathode. Root mean square (RMS) on-state current is the maximum RMS value of the principal current when SCRs are turned on. Peak cycle surge on-current is the maximum on-state current of short-term duration that can be applied for one full cycle of conduction without performance degradation. Gate trigger current is the minimum current required to switch silicon controlled rectifiers from the off-state to the on-state at the specified off-state voltage and temperature. Gate trigger voltage is the gate voltage required to produce the gate trigger current. Holding current is the minimum principal current required to maintain SCRs in the on-state. Rate-of-rise of off-state voltage is the minimum rate-of-rise value for the principal voltage that causes switching from the off-state to the on-state. Other performance specifications include repetitive peak controllable on-state voltage and temperature junction.