Power Amplifier

Literature Survey

SUCHITAV KHADANGA
RFIC TECHNOLOGIES, BANGALORE, INDIA

http://www.rficdesign.com
Switch type power amplifier is the most important characteristic of high efficiency.

The efficiency of the switch amplifier in turn depends on the gate driving signal.

To achieve a suitable gate signal two pseudo E class drivers are implemented.

Limited DC RF choke inductance is used.

Due to large inductances in this circuit a bond wire is used for testing.

Supplies high power combined with proper working of power stage at the respective states.

Consists of Class F-amplifier, inverter and Class E drivers.
Technical Details P-1

<table>
<thead>
<tr>
<th>SPECIFICATIONS</th>
<th>VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technology</td>
<td>TSMC 180nm</td>
</tr>
<tr>
<td>Supply Voltage</td>
<td>1V</td>
</tr>
<tr>
<td>Saturate Output Power</td>
<td>5-8dBm</td>
</tr>
<tr>
<td>Frequency Operation</td>
<td>2.4GHz</td>
</tr>
<tr>
<td>Input power</td>
<td>-10dBm</td>
</tr>
<tr>
<td>PAE</td>
<td>19%</td>
</tr>
<tr>
<td>S11</td>
<td><-23dB</td>
</tr>
<tr>
<td>S22</td>
<td><-9dB</td>
</tr>
<tr>
<td>Topology</td>
<td>Differential</td>
</tr>
<tr>
<td>Year of Publication</td>
<td>2013</td>
</tr>
</tbody>
</table>
P-2: A Digitally Modulated Class-E Polar Amplifier in 90 nm CMOS

- Class E amplifier with Digital impedance amplitude modulation.
- Suitable for moderate PAPR (Peak-to-average-power-ratio) modulation schemes (π/4 DQPSK).
- Digitally tuneable matching circuit used to perform AM and hence non-linearity is reduced.
- Peaks of both current and voltage do not overlap, minimizes power dissipation.
- Π-type network is chosen as it covers entire Smith chart.
- Net die area reduction.
- Increase in Bandwidth as phase and amplitude take different paths.
- Passive network simple in construction.
Technical Details P-2

- Technology
- Supply Voltage
- Output Power
- Small Signal Gain
- Frequency operation
- Efficiency
- EVM
- Die-Area
- Topology
- Year of Publication

- CMOS 90nm
- 1.2V
- 9dBm
- 11dB
- 2.4GHz
- 30%
- 2.6%
- 0.924 mm²
- Single Ended
- 2012
Circuit (a) suffers from high power consumption, large output swings at drain of M2, bias current must be high.

Stacking of circuits (b) is done to mitigate drawbacks of (a).

Advantageous as it reduces power consumption and also protects M2 from excessive drain-gate voltage.

Dual band PA.

Cascoding with power stage and driver to increase linearity.
Technical Details P-3

<table>
<thead>
<tr>
<th>SPECIFICATIONS</th>
<th>VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technology</td>
<td>CMOS 0.25µm</td>
</tr>
<tr>
<td>Supply Voltage</td>
<td>2.5V</td>
</tr>
<tr>
<td>Output Power</td>
<td>0dBm</td>
</tr>
<tr>
<td>Frequency Operation</td>
<td>2.4GHz</td>
</tr>
<tr>
<td>Output Power consumption</td>
<td>16mW</td>
</tr>
<tr>
<td>Bias current</td>
<td>3mA</td>
</tr>
<tr>
<td>Load impedance</td>
<td>50Ω</td>
</tr>
<tr>
<td>Die-Area</td>
<td>1.83mm X 2mm</td>
</tr>
<tr>
<td>Topology</td>
<td>Single Ended</td>
</tr>
<tr>
<td>Year of Publication</td>
<td>2003</td>
</tr>
</tbody>
</table>
P-4: Optimised high-efficiency Class E radio frequency power amplifier for wide bandwidth and high harmonics suppression

- Switch Mode Class-E PA Single ended
- Wide Bandwidth
- Combine Parallel Circuit Load
- High-Order Harmonic Suppression (single reactance compensation technique with harmonic trap at load)
- Inductive at fundamental frequencies and Capacitive at harmonic frequencies
- Combining power technique (high eff and PAE)
- Less Area and Less Cost
- Stability and Robustness has been verified
Technical Details P-4

<table>
<thead>
<tr>
<th>SPECIFICATIONS</th>
<th>VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technology</td>
<td>LDMOS</td>
</tr>
<tr>
<td>Supply Voltage</td>
<td>7.2V</td>
</tr>
<tr>
<td>Output Power</td>
<td>6.5-7W</td>
</tr>
<tr>
<td>Frequency Operation</td>
<td>136-174MHz</td>
</tr>
<tr>
<td>Efficiency</td>
<td>>60%</td>
</tr>
<tr>
<td>Second Harmonic</td>
<td>84dBc</td>
</tr>
<tr>
<td>Stability (10:1 VSWR)</td>
<td>Stable</td>
</tr>
<tr>
<td>Robustness (10:1 VSWR)</td>
<td>NO degradation</td>
</tr>
<tr>
<td>Drain Efficiency</td>
<td>71%</td>
</tr>
<tr>
<td>Topology</td>
<td>Single Ended</td>
</tr>
<tr>
<td>Year of Publication</td>
<td>2013</td>
</tr>
</tbody>
</table>
P-5:A 2.4 GHz 0.18-\textmu m CMOS Class E Single-Ended Power Amplifier without Spiral Inductors

- Class-E PA Single ended.
- Bond Wire-High Q-Less area-Increased performance.
- Cascode with self-biasing to overcome device stress.
- Two Stages:
 - Driver stage (Class-A)
 - Power stage (Class-E)
- Output power changes approximately proportional to V_{dd}^2,
- No Baluns-reduce chip area

![Complete schematic of the proposed Class E single-ended PA without spiral inductors.](image)
<table>
<thead>
<tr>
<th>SPECIFICATIONS</th>
<th>VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technology</td>
<td>TSMC CMOS 0.18µm</td>
</tr>
<tr>
<td>Supply Voltage</td>
<td>3.3V</td>
</tr>
<tr>
<td>Output Power</td>
<td>19.2dBm</td>
</tr>
<tr>
<td>Frequency Operation</td>
<td>2.35-2.45GHz</td>
</tr>
<tr>
<td>PAE</td>
<td>27.8%</td>
</tr>
<tr>
<td>Chip Sizes</td>
<td>0.37mm²</td>
</tr>
<tr>
<td>Topology</td>
<td>Single-Ended</td>
</tr>
<tr>
<td>Year of Publication</td>
<td>2010</td>
</tr>
</tbody>
</table>
P-6: Design of Efficient Class-E Power Amplifiers for Short-Distance Communications

- Class-E with π-matching.
- Pre-driver and power stage to boost the power.
- PE and PAE nearly the same.

Fig. 12. Circuitry of the proposed 2.4-GHz PA.
Technical Details P-6

SPECIFICATIONS

- **Technology**
- **Supply Voltage**
- **Output Power**
- **Frequency Operation**
- **Maximum Overall Efficiency**
- **Power Gain**
- **Output Impedance**
- **Second Harmonic**
- **Third Harmonic**
- **Chip area**
- **Topology**
- **Year of Publication**

VALUE

- CMOS 0.13µm
- 0.45-0.8V
- 3.2-5.7dBm
- 2.4GHz(2.2-2.5GHz)
- 55%
- 20dB
- 50Ω
- -25.5dBc
- -41dBc
- 0.5mm²
- Single Ended
- 2012
P-7: A Dual-Band CMOS Power Amplifier at 1.8 GHz and 2.6 GHz for LTE Applications

- Dual band-PA (1.8 & 2.6GHz)
- Two stage cascade structure
 - Driver stage
 - Power stage
- The driver stage uses a RC and resistive feedback-increased BW
- The power stage employs diode linearizer-linearity
- Cascade structure-low breakdown voltage-good input-output isolation-high power gain
- RC-stability of power stage-improve linearity

![Schematic diagram of the dual-band PA](image)
Technical Details P-7

SPECIFICATIONS
- Technology
- Supply Voltage
- Output Power
- Frequency Operation
- PAE
- Power Gain
- Output Impedance
- Input return loss
- Output return loss
- Power Consumption
- Topology
- Year of Publication

VALUE
- TSMC CMOS 0.18µm
- 3.3V
- 24.6/23.4dBm
- 1.8/2.6GHz
- 34.6/40.5%
- 22/20.2dB
- 50Ω
- <-18dB
- <-8dB
- 211mW
- Single Ended
- 2012
P-8: A Broadband Injection-Locking Class-E Power Amplifier

- Two stage Injection locking Class-E PA
- PA-oscillator-output voltage tuned to input frequency
- High PAE and Power Gain
- GMSK and 64QAM
- Two stage cascade structure
 - Driver stage
 - Power stage
- Negative resistance concept to compensate the losses
- Auxiliary generator is used for stability analysis
TECHNICAL DETAILS P-8

SPECIFICATIONS

<table>
<thead>
<tr>
<th>Technology</th>
<th>GaAs 0.5µm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply Voltage</td>
<td>6V</td>
</tr>
<tr>
<td>Output Power</td>
<td>26.6/26.7/27dBm*</td>
</tr>
<tr>
<td>Frequency Operation</td>
<td>3.5GHz</td>
</tr>
<tr>
<td>PAE</td>
<td>59/57/55%*</td>
</tr>
<tr>
<td>Power Gain</td>
<td>30/32dB*</td>
</tr>
<tr>
<td>Drain Efficiency</td>
<td>58/52%*</td>
</tr>
<tr>
<td>EVM</td>
<td>0.75/3.08*</td>
</tr>
<tr>
<td>FOM</td>
<td>97.98/64.56*</td>
</tr>
<tr>
<td>ACPR-1MHz Offset</td>
<td>-21dBC</td>
</tr>
<tr>
<td>Topology</td>
<td>Single Ended</td>
</tr>
<tr>
<td>Year of Publication</td>
<td>2012</td>
</tr>
</tbody>
</table>

* Continuous wave/GMSK/64QAM
P-9: A 60 GHz Drain-Source Neutralized Wideband Linear Power Amplifier in 28 nm CMOS

- Drain-Source Neutralization-stability of PA-wideband, by low-\(k\) transformer
- Three stage cascade structure using transformers
 - Pre-Driver stage
 - Two Cascode Power stage
 - Power Combiner
- Employ DAT for higher output power
- \(Q\)-current is halved for same output power by using cascode
Technical Details P-9

SPECIFICATIONS

- Technology
- Supply Voltage
- Saturated Output Power
- P1-db
- Frequency Operation
- PAE
- Power Gain
- Bandwidth
- Power Consumption
- Chip Area (core/total)
- Topology
- Year of Publication

VALUE

- CMOS 0.028µm
- 1.8-2.1V
- 16.5dBm
- 11.7dBm (62GHz with 6.3% PAE)
- 60GHz
- 12.6%
- 24.4dB
- 11GHz
- 211mW
- 0.122/0.64mm²
- Differential
- 2014
P-10: A Fully Integrated Transformer-Coupled Power Detector With 5 GHz RF PA for WLAN 802.11ac in 40 nm CMOS

- WLAN 802.ac
- Single stage PA with transformer I/O matching
- Consists of common gate and common source topology
- CG allows increasing power supply which allows achieving higher output power while operating reliably
Technical Details P-10

SPECIFICATIONS

- Technology
- Supply Voltage
- Saturated Output Power
- Output Power
- Frequency Operation
- PAE
- Power Gain
- Output Impedance
- Peak Drain Efficiency
- Topology
- Year of Publication

VALUE

- TSMC CMOS 0.040µm
- 2.5V
- 22.9dBm
- 24dBm
- 4.5-5.5GHz
- 38.8%
- 10dB
- 50Ω
- 40.8%
- Differential
- 2015
P-11: A CMOS High Efficiency +22 dBm Linear Power Amplifier

- Parallel A&B PA
- Improves dynamic range and power efficiency
- Increase P1dB by 3dB and reduces power consumption by 50% in the linear operation range
- Class A amplifier is the primary contributor for gain at the low signal levels, however class B at the high signal levels.
- Shunt inductors L_{in} are used to match the inputs, and the inductors RFC are used as RF chokes to prevent coupling of the RF signal to the power supplies and inductors L_o is used to match the output port.
Technical Details P-11

<table>
<thead>
<tr>
<th>SPECIFICATIONS</th>
<th>VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technology</td>
<td>CMOS</td>
</tr>
<tr>
<td>Output Power</td>
<td>22dBm</td>
</tr>
<tr>
<td>PAE</td>
<td>>40%</td>
</tr>
<tr>
<td>Linear Power Gain</td>
<td>12dB</td>
</tr>
<tr>
<td>P1dB</td>
<td>20.5dBm</td>
</tr>
<tr>
<td>Year of Publication</td>
<td>2003</td>
</tr>
</tbody>
</table>
P-12: Design of CMOS Class-E Power Amplifier for WLAN and Bluetooth Applications

- Class-E PA with modified driver
- Better output power at minimum input power levels
- Negative capacitance to reduce parasitic capacitance without external circuitry
- Better power gain at cost of extra hardware

Fig:- single ended class E PA

Fig:- Parallel PA
Technical Details P-12

<table>
<thead>
<tr>
<th>SPECIFICATIONS</th>
<th>VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technology</td>
<td>UMC CMOS</td>
</tr>
<tr>
<td>Supply Voltage</td>
<td>1.8V</td>
</tr>
<tr>
<td>Gain</td>
<td>20dBm</td>
</tr>
<tr>
<td>Frequency Operation</td>
<td>2.4GHz</td>
</tr>
<tr>
<td>PAE</td>
<td>40%</td>
</tr>
<tr>
<td>Topology</td>
<td>Single ended</td>
</tr>
<tr>
<td>Year of Publication</td>
<td>2012</td>
</tr>
</tbody>
</table>
P-13: Low-Power RF Transceiver for IEEE 802.15.4 (ZigBee) Standard Applications

- Two stage PA

- Low power

- Consists of class A pre-amplifier that drives the high efficient class C amplifier.

- Class C amplifier has been designed with conduction angle of 150 degrees, which allowed to achieve good tradeoff between efficiency and gain.

- The PA can provide an output power up to of 6 dBm when it is driven with an input power of -15 dBm supplied by the class-A driver stage.
Technical Details P-13

<table>
<thead>
<tr>
<th>Specifications</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technology</td>
<td>BiCMOS</td>
</tr>
<tr>
<td>Supply Voltage</td>
<td>1.8V</td>
</tr>
<tr>
<td>Output Power</td>
<td>6dBm</td>
</tr>
<tr>
<td>Saturated output power</td>
<td>8dBm</td>
</tr>
<tr>
<td>Power Consumption</td>
<td>16mW</td>
</tr>
<tr>
<td>Topology</td>
<td>Single Ended</td>
</tr>
<tr>
<td>Year of Publication</td>
<td>2006</td>
</tr>
</tbody>
</table>
P-14: A Highly Linear and Efficient CMOS RF Power Amplifier With a 2-D Circuit Synthesis Technique

- Class A tanh cascode cell (TCC) amplifier
- Linearization with 2DCST over wide range
- Doesn't require inverse circuit for amplitude correction
- TCC is used to realize class AB amplifier having tanh-like current voltage characteristic
- The total current is the linear sum of cell currents
- Linearity can be synthesized by appropriate sizing and scaling of the current-voltage transfer characteristic of individual cell

Fig: TCC CMOS RF PA

Fig: TCC amplifier
Technical Details P-14

<table>
<thead>
<tr>
<th>SPECIFICATIONS</th>
<th>VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technology</td>
<td>CMOS</td>
</tr>
<tr>
<td>Output Power</td>
<td>24.9dBm</td>
</tr>
<tr>
<td>Efficiency</td>
<td>41.6%</td>
</tr>
<tr>
<td>Topology</td>
<td>Single Ended</td>
</tr>
<tr>
<td>Year of Publication</td>
<td>2012</td>
</tr>
</tbody>
</table>
P-15: A 2.4-GHz 0.18-um CMOS Self-Biased Cascode Power Amplifier

- Two stage self biased cascode PA
- Equivalent total gain is of three stages
- Self biased cascoding reduces maximum drain-gate voltage across each transistor.
- Input and Output matching are designed to be off-chip to increase matching flexibility and avoid excessive power loss of on-chip inductors
- Traces on the PCB are used as transmission lines as a part of input, inter-stage and output matching networks(TL1-TL7)
- A two step matching network is used to transform load to optimum load, composed of TL4-TL7 and parallel capacitors C3 & C4 , which short circuit the second and third harmonics to ground
Technical Details P-15

<table>
<thead>
<tr>
<th>SPECIFICATIONS</th>
<th>VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technology</td>
<td>CMOS</td>
</tr>
<tr>
<td>Supply Voltage</td>
<td>2.4V</td>
</tr>
<tr>
<td>Output Power</td>
<td>23dBm</td>
</tr>
<tr>
<td>Frequency Operation</td>
<td>2.4GHz</td>
</tr>
<tr>
<td>Efficiency</td>
<td>42%</td>
</tr>
<tr>
<td>Small Signal Gain</td>
<td>38dBm</td>
</tr>
<tr>
<td>Large Signal Gain</td>
<td>31dBm</td>
</tr>
<tr>
<td>Area</td>
<td>0.81mm x 0.57mm</td>
</tr>
<tr>
<td>Topology</td>
<td>Single Ended</td>
</tr>
<tr>
<td>Year of Publication</td>
<td>2003</td>
</tr>
</tbody>
</table>